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Abstract— Computer vision-based technologies signif-
icantly enhance the automation capabilities of robotic-
assisted minimally invasive surgery by advancing tool
tracking, detection, and localization. However, the lack of
high-quality labeled image datasets constrains these tech-
niques, which require large amounts of data for training.
The high-dynamic surgical scenario poses a considerable
challenge to the image synthesis methods. This research
introduces a novel method using 3D Gaussian Splatting to
overcome the scarcity of surgical image datasets. We pro-
pose a dynamic 3D Gaussian model to represent dynamic
surgical scenes, enabling the rendering of surgical instru-
ments from unseen viewpoints and deformations with real
tissue backgrounds. Utilizing a dynamic training adjust-
ment strategy, we address challenges posed by poorly cal-
ibrated camera poses from real-world dynamic scenes. Ad-
ditionally, we propose a method based on dynamic Gaus-
sians for automating the generation of annotations for our
synthetic data. For evaluation of the method, we construct a
new dataset with 7 scenes 14,000 frames recording tool and
camera motion, as well as an articulation of the tool jaw,
with a background of an ex-vivo porcine model. Using this
dataset, we synthetically replicate the deformed instrument
of ground truth data, allowing direct comparisons of syn-
thetic image quality. Experimental results illustrate that our
method generates photo-realistic labeled image datasets
(29.87 PSNR). We further compare the performance of three
U-Net and YOLO models trained on real, synthetic, and
mixed synthetic images, respectively, by assessing their
performance on an unseen real-world image dataset. Our
results show that the performance of models trained on
synthetic images and real images differs by less than 1.5%
across various metrics, while the model trained on the
mixed synthetic dataset shows an improvement in model
performance by nearly 10%.

Index Terms— Surgical Data Science, Surgical AI, Data
generation, 3D Gaussian splatting, Laparoscopy.

I. INTRODUCTION

SURGICAL robotics can significantly enhance automation
and intelligence in minimally invasive procedures like

laparoscopic surgery. By integrating Robotic-Assisted Min-
imally Invasive Surgery (RAMIS) with Computer Assisted
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Interventions (CAI), this technology not only improves the
precision and flexibility of surgical operations but also reduces
patient recovery times and complication rates. Accurate real-
time tracking, segmentation, and classification of surgical
instruments are essential for both RAMIS and CAI. These
capabilities facilitate intelligent surgical navigation, optimize
surgical planning, and enhance overall surgical efficiency
and safety, which are crucial steps towards automating la-
paroscopic surgery. Achieving these goals relies heavily on
deep learning-based image understanding methods, such as
semantic segmentation and object detection.

Deep learning-based methods require a substantial amount
of annotated image data for training to ensure robustness in
complex and highly dynamic surgical scenarios. However, the
lack of high-quality labeled surgical image datasets has con-
strained the development of these methods [1]. This scarcity
can be attributed to several factors. Ethical considerations in
recording surgical videos make it complex to manage and
share medical data [2]. In the laparoscope, a limited field
of view variable lens distortion under different focuses often
results in poor image quality which is impossible to calibrate.
During the procedures, surgical tools, blood, and diathermy
smoke regularly occlude the camera’s view, leading to incom-
plete visual information. These factors make the generation of
a high-quality image dataset difficult, and generating detailed
annotations requires significant time and labor costs.

As a result, developing methodologies for addressing data
scarcity in laparoscopy has become a key research focus. The
use of 3D virtual simulators to generate synthetic images [3]
and render textures using photo rendering software [4] gives
one option. However, these images lack realism, failing to
replicate the lighting and textures of real scenes, making them
unsuitable for direct use in training neural networks. Alterna-
tively, methods using Simultaneous Localization and Mapping
(SLAM) techniques [5], [6], [7] reconstruct static surgical
scenes by generating individual meshes for each frame and
rendering images. However, these methods cannot generate
annotated data, necessitating manual annotation, which limits
their application in supervised learning tasks. Additionally, the
quality of the images generated by these methods is often
subpar.

To overcome the challenges of manual annotation and
improve image quality, some studies have explored the use
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Fig. 1. Method Overview. (a) Our method takes images of surgical instruments in various poses as input. (b) Then we reconstruct the 3D Gaussian
representation of the surgical scene. (c) After the reconstruction, our method can predict the 3D Gaussian representation of unseen deformations
of the surgical instruments. (d) We render them as realistic images, and additionally can render the tool annotations automatically. In (d) the red
boxes indicate the bounding boxes, and the white areas represent the instrument masks.

of image synthesis [8] and weak annotations [9]. Other works
have proposed the use of generative models and Image-to-
Image Translation (I2I) techniques [10] to generate simulated
data for model training. These methods aim to produce re-
alistic surgical images through fitting and adjustment, effec-
tively addressing the annotation problem. However, images
generated by these approaches are predominantly suited for
static scenes, whereas laparoscopic surgery are often highly
dynamic, involving instrument motion, changes in instrument
pose, and soft tissue deformation.

Neural Radiance Fields (NeRFs) [11] and 3D Gaussian
Splatting (3DGS) [12] have shown significant potential for
image dataset generation. These technologies can reconstruct
3D scenes and achieve high-quality image rendering, as well
as render images from novel viewpoints. This capability allows
these methods to generate images from previously unseen
camera views, facilitating data augmentation and significantly
increasing the diversity of generated images. Moreover, both
methods have the potential to handle dynamic scenes, recent
methods that combine NeRFs or 3DGS with time-dependent
neural displacement fields [13], [14] have become represen-
tative works in dynamic surgical scene reconstruction. Com-
pared to NeRF, 3DGS has an advantage in reconstruction, en-
abling explicit scene representation and offering scene-editing
capabilities that NeRF lacks. This makes 3DGS more suitable
for reconstructing dynamic surgical scenes and generating
corresponding image data.

Although 3DGS-based methods [15], [16] have achieved
dynamic representation of surgical scenes, they still face
several challenges. Firstly, these methods perform well when
using simulated datasets because they have access to ground
truth camera poses and scene point cloud motion. However,
their performance degrades significantly when processing real-
world datasets [16]. This degradation occurs because these
methods rely on structure-from-motion (SfM) techniques to
calibrate camera poses from the input scene for 3DGS ini-
tialization. In real-world dynamic scenes, due to significant
changes between frames, SfM techniques struggle to match
frames and register corresponding points accurately, resulting
in substantial initialization errors. These errors severely affect
3DGS training. Current dynamic 3DGS methods are, therefore,
challenging to apply to real-world scenarios. Method [13], [17]
utilizes additional sensors to record precise camera pose data,

enabling it to be applied to real surgical scenes. However, this
approach significantly limits the method’s generalizability due
to the requirement for additional sensors, which is a major
constraint. Most laparoscopic surgery environments cannot
support the addition of precise pose sensors to the camera, thus
this approach does not fundamentally solve the problem. Sec-
ond, these approaches cannot handle dynamic scenes involving
surgical instruments, as they focus on removing instruments
to visualize the dynamic background. This limitation makes
the generated images unsuitable for training neural networks
for instrument-related tasks. However, instrument recogni-
tion is essential for advancing laparoscopic surgical robotics.
Furthermore, these methods can only learn and temporally
encode the observed deformations, and can thus not generate
novel deformations outside of the training set. Additionally,
while these methods can render images, they cannot generate
corresponding annotated data, necessitating manual annotation
before use in neural network training.

To address the aforementioned challenges, we propose a
novel method for generating surgical image datasets that can
synthesize images including instrument in novel camera view
and tool deformation using dynamic 3D Gaussian reconstruc-
tion, as illustrated in Fig. 1. In our approach, we train a canon-
ical Gaussian model to accommodate scene deformations in
the canonical space and use a New Pose Synthesis (NPS)
weights that deform the canonical instrument Gaussians into
various poses. This technique not only tackles the challenge
of reconstructing dynamic surgical scenes with instruments but
also offers the ability to render Gaussians for unseen tool poses
and jaw angles. We introduce a novel dynamic optimization
strategy to mitigate the issues of inaccurate initial camera
poses in real dynamic scenes , enabling our method to operate
directly on any real dynamic scene dataset without the need for
additional sensors to provide precise camera poses. Ultimately,
through rendering, we can obtain realistic images and gen-
erate corresponding accurate annotations, thereby supplying
reliable training data for downstream tasks. In our analysis,
we compare the quality of our generated images with state-
of-the-art image generation methods and use our synthetic
frames to train surgical instrument detection and segmentation
models. The results demonstrate that our method can produce
high-quality images, and models trained on our synthetic data
achieve performance comparable to those trained on real image
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data. Our contributions can be summarized as follows:
1.Novel Dynamic Surgical Instrument Reconstruction

Framework: We propose an innovative framework for dy-
namic surgical instrument reconstruction that learns from
previously observed instrument deformations. This framework
can reconstruct instruments in dynamic surgical scenes and
predict the view under tool movement, including unseen pose
and position changes for instruments.

2.Dynamic Adjustment Method for 3DGS Training:
We introduce a method for dynamically adjusting the 3DGS
training process. By adopting different training strategies at
various stages, our approach addresses the challenges posed
by poor initialization due to inaccurate camera poses when
using real-world scenes as input.

3.Automatic Generation of Accurate Annotations: The
proposed method can automatically generate annotation infor-
mation alongside the rendered images.

4.Evaluation with Ground Truth (GT) Images: We con-
ducted additional experimental setups to obtain GT images that
can be directly compared with the generated images. Through
comparative experiments on image quality and neural network
training using GT images as the benchmark, we ensure the
reliability of our conclusions.

II. RELATIVE WORKS

A. Surgical Scene Reconstruction

Numerous efforts have been made to reconstruct dynamic
surgical scenes. These approaches can be categorized into two
main types: implicit and explicit representation reconstruction.

1) Implicit Representation: Implicit representations, such as
NeRF [11], have significantly advanced medical imaging.
Unlike traditional methods that rely on spatial geometric
information and the tracking of key deformation points for re-
construction, implicit representations use neural radiance fields
and deformation fields to capture and represent scene deforma-
tion. This combination facilitates the effective reconstruction
of dynamic scenes. Recently, EndoNeRF [14], inspired by
dynamic NeRF [18], has emerged as a promising solution for
dynamic surgical scene reconstruction. It uses tool-guided ray
casting, stereo depth-cueing ray marching, and stereo depth-
supervised optimization to achieve high-quality results, but
suffers from lengthy training times. To address this, Forplane
[19] optimizes training by conceptualizing surgical procedures
as 4D volumes, decomposed into static and dynamic fields
with orthogonal neural planes, reducing memory usage and
accelerating optimization. However, these methods neglect the
modeling of surgical instruments and produce non-editable,
limited generalization scenes.

2) Explicit Representation: Explicit scene reconstruction
methods, such as 3D Gaussian Splatting (3DGS) [12], over-
come the limitations of implicit representation methods, which
are difficult to edit. By manipulating obtained scene 3D
Gaussian, it is possible to rotate and translate objects within
the scene without sacrificing reconstruction quality. Addi-
tionally, these methods enable rapid training and real-time
rendering of the reconstructed scenes.Similar to EndoNeRF
[14], EndoGaussian [13] and EndoGS [20] use 3D Gaussians

to represent surgical scenes. These methods process ordered
images with continuous deformations over time, segmenting
them into static scenes and introducing time-based defor-
mation fields to stitch them together, reconstructing tissue
deformations in dynamic surgical scenario. However, they
face significant challenges: they struggle to accurately capture
surgical instrument deformations, can only reconstruct past
scenes without predicting future changes, and demand high-
quality input data, including continuous temporal changes and
precise camera poses.

B. Instrument Synthesis in Medical Imaging
Various methods generate surgical instrument images. Game

engines and surgery simulators [21], [22] offer scalable, noise-
free solutions but struggle to mimic real surface properties and
textures accurately. Generative neural networks like GANs and
Cycle-GANs [23], [24], [25], [26] create synthetic datasets
resembling real image distributions. However, they cannot
automatically generate corresponding annotations, requiring
additional manual effort. Recent methods [27], [28], [29],
[30], [31] integrate simulation environments with generative
networks. Simulated medical images are enhanced using real
image characteristics, producing high-quality, annotated syn-
thetic datasets. However, these methods are designed for static
images and struggle to alter the pose, orientation, and defor-
mation of instrument end-effectors, limiting their applicability
in dynamic surgical environments.

III. METHODOLOGY

A. Deformable Gaussian
Current dynamic 3DGS-based reconstruction methods typ-

ically decompose dynamic scenes into a series of consecutive
static scenes based on temporal relationships [15]. These meth-
ods model the Gaussian representation of each static scene
and then merge these representations to depict the dynamic
scene. While this approach can represent dynamic scenes,
it fails to accurately capture the deformation of Gaussians.
Consequently, these methods are limited to representing only
previously known scene deformations and cannot generate
Gaussian representations for unseen scenarios. To truly under-
stand and learn the inherent changes in scene deformation, it
is crucial to grasp the dynamic alterations within the Gaussian
representation of the scene.

Therefore, we introduce a deformable Gaussian model to
more accurately describe scene deformation. The 3D Gaus-
sians are initialized from point clouds generated by COLMAP
[32], following the specified mathematical expression:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ) (1)

where µ denotes the mean value of the point cloud P (x, y, z)
and Σ is a 3D covariance matrix, expressed as Σ = RSSTRT .
Here, R denotes a 3 × 3 rotation matrix, and S is a 3 × 3
diagonal matrix representing the scale. To simplify its repre-
sentation, the rotation matrix R is converted into a vector r.

During initialization, the Gaussian is also assigned an opac-
ity attribute σ, thus the 3D Gaussian is defined as:

G(µ, r, s, σ) (2)
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Fig. 2. Training Process Overview. Given a set of unordered images of a laparoscopic surgery procedure, our method represents the dynamic
scene using 3D Gaussians and synthesizes the Gaussian representation of the instrument in a new pose from novel viewpoints. The standard 3D
Gaussian representation of the scene is trained in a canonical space. An MLP is used to estimate the attribute changes during scene deformation,
transforming the canonical Gaussians to the new deformation. The transformed Gaussians are then rendered using rasterization. The rendered
images are compared with ground truth images to evaluate the training. The entire training process is optimized using a dynamic optimization
strategy.

When the scene undergoes deformations, the modification
of a Gaussian can be represented as G′(µ′, r′, s′, σ′). This
reveals that updating only the attributes of the Gaussians in
the deformation regions suffices to depict the scene’s changes.
Hence, we can express a scene’s transformation using an
incremental formulation:

G′(µ′, r′, s′, σ′) = G(µ+ δµ, r + δr, s+ δs, σ + δσ) (3)

To mitigate the impact of dynamic changes in the scene, we
train this standard Gaussian model in the canonical space. To
model these transformations effectively, if we can establish a
mapping function F that inputs the scene deformation and cur-
rent standard Gaussian, and outputs the Gaussian increments
associated with these deformations, we can effectively repre-
sent the evolving scene. In this work, we introduce a learned
New Pose Synthesis (NPS) weight as this mapping function.
The NPS weight learns how the Gaussian representation of an
instrument changes as it transitions from one pose to another,
thereby enabling the prediction of the Gaussian representation
in new poses. The core of these NPS weights is a Multi-
Layer Perceptron (MLP) capable of predicting changes in the
Gaussian properties. We set the depth of the MLP D = 12
and the dimension of the hidden layer W = 256.

The NPS weight takes two inputs: the current standard
Gaussian attributes, µ, and the change parameters, p, to predict
the incremental changes in the attributes u, r, and s. The µ
parameter is derived from the XYZ coordinates of the point
cloud. Motion in the instruments may be represented as a
translation of these points, from which we derive µ. The
change parameter p is constructed from recorded instrument
poses, determined by quaternions that represent instrument
rotation, and the opening angle of the tool jaw. In this way,
the inputs µ and p encompass all seven degrees of freedom of
possible movement in the scene (three each for rotation and
translation, and one for the end-effector’s operation). These

processes can be summarized as:

(δµ, δr, δs) = F(γ(µ), γ(p)) (4)

where γ denotes the positional encoding, adapted from [11],
which improves the training quality.

γ(µ) = (sin(2kπµ), cos(2kπµ))L−1
k=0 (5)

Where we set L = 10 for both µ and p. Note that during this
process, we do not update the opacity σ. Opacity σ primarily
affects the rendering process by determining the final rendered
color. Since the color of the instrument typically does not
change when its pose changes, we do not estimate the opacity.
Nevertheless, σ of the Gaussian in the canonical space is still
optimized during training.

B. Deformable Gaussian Training

The input is unordered images that capture a dynamic
surgical scene with instrument deformation. Initially, we use
structure from motion technique to calibrate the camera pose
and generate a sparse point cloud that represents the scene,
along with the change parameter p for each frame. The sparse
point cloud is then initialized into Gaussians and transferred
into the canonical space for training. As the scene transitions
from between frames, the Gaussian attributes µ and p of
the current frame are encoded and fed into the NPS weight,
which attributes necessary to transform the Gaussians from the
current frame to the next.

As training progresses, the NPS weight gradually learns
to induce changes in the scene’s Gaussian representation. As
this is built from changes in µ and p between two frames,
we can generate new frames by inputting arbitrary µ and p
values. We further validate this ability to generate high-quality
Gaussians representing unseen scene transformations in the
experimental section IV. Following the 3DGS [12], we render
the transformed scene’s Gaussian G(µ+ δµ, r+ δr, s+ δs, σ)
into an image. This rendered image is then compared with the
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Fig. 3. Dynamic Density Control. In the first phase of training, the
Gaussian distributions are newly initialized and contain numerous error
points. During this phase, the loss function shows fluctuations, and the
PSNR values are low but steadily increasing. In the second phase,
the PSNR values generally exceed 20, and the loss function shows a
consistent decline. The density control is gradually relaxed throughout
the iterations, allowing for the splitting and cloning of Gaussian points to
further enhance the training quality.

ground truth image of the transformed scene to calculate the
loss function L, a combination of L1 loss and a D-SSIM term:

L = (1− λ)L1 + λLD-SSIM (6)

It is important to note that the rendering process depends
on camera poses. As mentioned earlier, using real dynamic
scenes often results in camera pose inaccuracies. Therefore,
we assign a higher weight (λ = 0.1) to the L1 term. This is
because SSIM (Structural Similarity Index Measure) evaluates
structural information, contrast, and brightness, making it
very sensitive to spatial relationships within the image. Any
viewpoint discrepancies can lead to significant differences in
corresponding structures, causing SSIM to drop sharply. By
reducing the weight of the LD-SSIM term, we minimize the
impact of camera pose errors on the training outcome. After
calculating the loss, we update the attributes of the Gaussians
in the canonical space and also update all parameters of the
NPS weight. Fig. 2 summarizes our training process.

C. Dynamic Training Adjustment

1) Dynamic Density Control Adjustment: Initialization errors
from incorrect camera poses pose significant challenges to
3DGS training with dynamic real-world datasets. These er-
rors introduce numerous erroneous points into the initialized
Gaussian models, severely impacting 3DGS’s density control
mechanisms. Density control aims to enhance scene detail by
cloning small Gaussians in sparse areas and splitting large ones
in dense areas. However, when applied to erroneous Gaussians,
it misplaces or redundantly multiplies error-prone Gaussians,
exacerbating minor errors and causing training failure. While
3DGS can correct errors in static scenes, its robustness is
compromised with dynamic datasets, as premature density
control amplifies errors beyond its corrective capabilities.

Density control is predefined before training by three pa-
rameters: the densification interval Pdi, the opacity reset
interval Poi, and a positional gradient threshold τpos. These
fixed parameters do not accommodate the rapid dynamics of
real-world scenes. Removing or delaying density control can
mitigate these issues but may compromise the overall quality
of the Gaussian representation, as density control is crucial for
enhancing fidelity and detail.

To address this, we propose an adaptive density control
strategy, illustrated in Fig. 3. We partition the training into
two phases, guided by reductions in the loss function and
improvements in the Peak Signal-to-Noise Ratio (PSNR) of
rendered images, and dynamically adjust the density control
during the training process.

In the first phase, Gaussians are newly initialized and often
contain numerous errors. During this initial phase, we restrict
density control to prioritize correcting these erroneous points
to their accurate positions. We extend densification and opacity
reset intervals and increase the gradient threshold, setting
Pdi = 500, Poi = 10, 000, and τpos = 0.0004. Once the
erroneous points are largely corrected in the first phase, the
second phase commences as PSNR values exceed 20 and
the loss function consistently declines. Here, we gradually
reintroduce density control, allowing for strategic splitting
and cloning of Gaussian points to enhance training quality.
This phase effectively enhances geometric detail and refines
overlapping areas, significantly improving model accuracy and
robustness. Parameters for this phase are set to Pdi = 200,
Poi = 3000, and τpos = 0.0002.

2) Dynamic Spherical Harmonics Function Update: Similar
to dynamic density control, we adopt an adaptive strategy for
updating Spherical Harmonics (SH) coefficients. SH is effec-
tive for representing functions in 3D Gaussian, capturing illu-
mination and details in complex scenes. Higher-order SH coef-
ficients represent finer details but increase training complexity.
In early training stages, we restrict SH updates to lower orders,
focusing on correcting erroneous Gaussian initialization rather
than complex details. This reduces computational overhead,
allowing quicker convergence to a satisfactory state, primarily
learning basic lighting and geometric structure. As training
progresses, we gradually increase the order of SH updates to
capture more complex details. In later stages, frequent and
complex SH updates enable learning finer variations in lighting
and scene details, improving overall performance. This strat-
egy ensures initial stability and fully leverages higher-order
SH’s expressive power for high-precision scene reconstruction.

3) Uniform Motion Rendering: In the original 3DGS training
process, input images are randomly selected, and the current
Gaussian distribution is rendered based on the camera pose of
the selected image, followed by a comparison with the image
to compute the loss. However, since our input images include
different poses of the instrument, there are significant varia-
tions in the instrument’s appearance between two consecutive
images. An instrument part visible in one frame might become
the background in the next. Such substantial variations pose
challenges for the NPS Weight to accurately predict Gaussian
changes in the early stages of training. This method leads
to a larger computed loss between the generated Gaussian
distribution and the real image, thereby slowing down the
convergence of the training process.

To address this issue, we introduce uniform motion sim-
ulation as shown in Fig. 4. In the first phase defined in 3,
we sort the images according to the pose positions of the
instrument, simulating a uniform motion with slow changes.
This orderly variation is easier to learn, enabling the training
process to converge more quickly. Once the training progresses
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Fig. 4. Uniform Motion Rendering: The first row shows random ren-
dering, where the instrument undergoes significant changes between
frames. The second row shows uniform motion rendering, where the
instrument’s movement between frames is more consistent.

to the second phase, we revert to the random rendering
strategy, allowing the model to adapt to larger variations in
the instrument’s poses. By this stage, the model has acquired
a certain capability to handle smaller changes. Gradually
introducing larger variations helps the NPS learn and adapt
to complex changes of the instrument, thereby enhancing the
overall performance and robustness of the model.

4) Dynamic Camera Pose Compensation: Due to inaccura-
cies in the input camera poses, training with imprecise poses
may lead to overfitting on the training data. As mentioned
in HyperNeRF [33], inaccurate camera poses in real-world
datasets can cause spatial jitter between frames in the test
or training set. This jitter can affect the rendering process,
resulting in significant deviations between the rendered test
images and the ground truth. To compensate for the rendering
jitter caused by inaccurate camera poses, we designed a camera
pose compensation mechanism. This compensation primarily
occurs in the first phase of training:

(δµ, δr, δs) = F(γ(µ), γ(p) + ∆) (7)

∆ = (N (0, 1)− 0.5) · β · tphase (8)

where ∆ represents the compensation, N (0, 1) denotes the
standard Gaussian distribution, and subtracting 0.5 adjusts the
value range from [0, 1] to [−0.5, 0.5]. This adjustment allows
for the simulation of camera pose errors in both positive
and negative directions. The scaling factor β is empirically
determined and has a value of 0.3. tphase is a boolean value
used to determine the current training phase; it is set to 1
during the first phase and 0 during the second phase.

D. Automatic Annotation Generation

To generate annotation files corresponding to surgical instru-
ments, the first step is to segment these instruments from the
background. For surgical tool Gaussians GI(µI , rI , sI , σI),
when deformation occurs, the new Gaussian representation is

Fig. 5. Annotation auto-generation: First, the instrument Gaussians
are extracted and rendered into 2D images. Based on the color differ-
ences between the foreground (instrument) and the background, the
positions of the instrument pixels in the 2D image are identified, resulting
in a mask and simultaneously generating a bounding box.

denoted as G′
I(µI + δµI , rI + δrI , sI + δsI , σI)). Conversely,

for scene Gaussians GS(µS , rS , sS , σS) that either remain
unchanged or undergo minimal deformation, the NPS weight
will generate little or no Gaussian increments, resulting in a
new representation G′

S(µS + δµS , rS + δrS , sS + δsS , σS)),
The increments δµI , δrI , δsI are significantly greater than
δµS , δrS , δsS . To identify significant changes, we experimen-
tally establish a variation threshold Hδµ,Hδr,Hδs. If the
increment in Gaussian attributes exceeds this threshold, we
consider it indicative of substantial deformation, typically
associated with the surgical tools in the scene. This method
allows us to effectively segment the deformed surgical tool
Gaussians from the rest of the scene.

We employ the differential Gaussian rasterization pipeline
proposed by [12] to render the segmented instrument Gaus-
sians. These 3D Gaussians are projected into 2D and rendered
for each pixel using the following 2D covariance matrix Σ′:

Σ′ = JWΣWTJT , (9)

where J is the Jacobian of the affine approximation of the
projective transformation, W is the view matrix transitioning
from world to camera coordinates, and Σ denotes the 3D
covariance matrix.

The color of the pixel on the image plane, denoted by C, is
calculated by α-blending the contributions of the N Gaussians,
which are sorted from closest to farthest:

C =
∑
i∈N

αici

i−1∏
j=1

(1− αj) (10)

αi = σie
− 1

2 (µ−ui)
TΣ′(µ−ui) (11)

where ci represents the color of each Gaussian along the
ray, and ui denotes the uv coordinates of the 3D Gaussians
projected onto the 2D image plane.

Since we have segmented the Gaussians corresponding to
the surgical instrument, the background is devoid of Gaussians
and will consequently be rendered as black, with C = 0.
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Fig. 6. Data recording platform.

In the final 2D image, only the regions corresponding to the
surgical instrument will have color, while the rest of the image
will be close to black. We then set a threshold to differentiate
between the black background (marked as background) and the
colored instrument (marked as foreground), thus generating the
corresponding 2D mask.

With this mask, we can automatically generate minimum
bounding boxes, using the mask’s outer contour, and bounding
boxes, using the extremity pixel coordinates. This process is
summarized in Fig. 5.

IV. EXPERIMENT

A. Data Recording

Due to the lack of publicly available datasets suitable for our
method, which requires simultaneous camera movement and
instrument deformation, we have constructed our experimental
platform for data collection. Our experimental setup consists
of: a laparoscope (Endoskill, MedEasy, China), laparoscopic
instruments (Brand), an electromagnetic (EM) tracking system
(Aurora, NDI, Canada), allowing 6-DoF motion tracking of
the instrument and laparoscope. Additionally, we modified the
instrument handle with a Hall-effect sensor to measure the jaw
opening angle. The data recording platform is shown in Fig.
6.

During data collection, we used ex-vivo pig tissue and
organs to create a more realistic surgical environment. Organs
were harvested from pigs reared and slaughtered for the food
chain. We collected data from various tissues and organs,
including the liver, stomach, colon, and jejunum. These tissues
and organs exhibit different visual characteristics such as color,
texture, and shape, effectively simulating different surgical
environments within the human body. During recording, we
used the EM tracker and jaw angle sensor to capture the
7-DoF data of the surgical tools and the camera’s 6-DoF
pose. To achieve a more realistic simulation of real-world
surgical scenarios, we exclusively utilized lighting sources
from laparoscope.

B. Image Quality Experiment

In our image quality experiments, we focused on evaluating
the images rendered by the proposed method (the last three
images in Fig. 7).Initially, we rendered images with various
backgrounds and identified the corresponding ground truth
(GT) images for comparison. We selected three test datasets:

Liver (Fig.7, first row) with diverse organs, fat, and tissue
backgrounds; Bowel (second row) with uniform color but
rich texture; and Stomach (third row) with uniform color and
texture. Our method demonstrates the ability to predict the
deformation of previously unseen surgical instruments. During
training, we reserved 10% of the images as a test set, which
did not participate in model training. During the rendering
process, we input the 7-DoF data from the test set, allowing
the model to predict and render these unseen deformations,
and then compared them with the corresponding GT images
(the first three images in each row of Fig.7).

We overlaid the rendered images with the GT images
to generate difference maps, visualizing the discrepancies
between them. As shown in Fig.7, the highlighted areas in
the difference map indicate discrepancies, primarily located in
the detailed regions of the surgical tool jaw and the image
edges.

We selected several state-of-the-art (SOTA) methods for
comparison, including 3DGS [12], NeRFies [34], 4DGS [15],
and D-3DGS [16]. Due to the inability of 4DGS [15] and D-
3DGS [16] to function properly on our collected real-world
dataset (due to inaccurate camera poses), we incorporated the
dynamic density control III-C.1 from our proposed method
into these two methods to ensure they could operate on our
dataset. The rendering results of all the comparison methods
are visualized in Fig. 8. Following the evaluation methods
utilized in [12], [34], [15], [16], we used photometric errors,
including PSNR, SSIM, and LPIPS, as evaluation metrics for
quantitative comparisons. The quantitative results on different
datasets are summarized in Table I.

As shown in Table I, the rendered images from our pro-
posed method outperform the SOTA methods across various
evaluation metrics on different background datasets. Moreover,
our method achieves satisfactory results even for unseen de-
formations. From Fig. 8, it can be observed that, although the
proposed method exhibits some blurring in certain background
regions, it excels in rendering surgical instruments, with both
the main body and jaw rendered clearly and closely resembling
the GT images.

3DGS [12] struggles to render surgical instruments as it
finds it difficult to accurately represent static surgical tools
within dynamic scenes. NeRFies [34] can render surgical
instruments to some extent, but they are very blurry and hard
to recognize. This is because NeRFies require high precision
in the camera poses of input images, which is extremely
challenging to calibrate accurately from real-world scenes,
thus the inaccurate poses in the real dataset severely impact
NeRFies’ performance.

After incorporating dynamic density control, 4DGS [15]
and D-3DGS [16] were able to operate on the real-world
dataset, but their rendering quality was still inferior to our
proposed method. The essence of 4DGS [15] and D-3DGS
[16] is to divide a dynamic scene into numerous consecutive
static scenes based on time t, represent each static scene, and
then render these static scenes sequentially according to time
t to synthesize the dynamic scene. This approach can only
represent significant and slow dynamic changes in the scene,
making it difficult to accurately render the rapid and subtle
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TABLE I
QUANTITATIVE RESULT OF THE COMPARISON EXPERIMENT

Liver Stomach Bowel
Methods PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

3DGS 18.01 0.708 0.643 17.21 0.701 0.553 18.33 0.722 0.631
NeRFies 23.12 0.772 0.493 22.17 0.763 0.441 21.71 0.714 0.512
4DGS 25.23 0.847 0.411 25.41 0.837 0.391 23.41 0.786 0.428

D-3DGS 24.01 0.811 0.462 23.32 0.803 0.422 24.68 0.835 0.431
Unseen Deformation 27.52 0.881 0.353 27.01 0.855 0.301 27.81 0.868 0.337

NeeCo 28.88 0.902 0.273 29.81 0.893 0.274 29.87 0.913 0.281

Fig. 7. Reconstruction result with difference maps. From left to right are the GT image, the rendered image, and the difference map. The difference
map is created by overlaying the two images, with highlighted colors indicating areas of difference.

Fig. 8. Comparison of dynamic scene reconstruction using various methods. Each row represents the same training dataset, with the proposed
method consistently showing more detailed reconstruction results, especially in the main body and jaw part of the surgical instruments.

deformations of surgical instruments commonly encountered
in surgical scenes. Consequently, they struggle to clearly and
accurately render parts of the surgical instruments that undergo
rapid changes, such as the jaw.

In conclusion, our proposed method demonstrates superior
performance in rendering surgical instruments with high clarity
and detail, even in the presence of unseen deformations,

compared to the existing SOTA methods. This advantage is
particularly evident in dynamic surgical scenes, highlighting
the robustness and effectiveness of our approach.

C. Neural Network Training Experiment
In our neural network training experiments, we validate

the proposed method’s effectiveness in using rendered images
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TABLE II
DATA SOURCE COMPARISON ACROSS DIFFERENT MODEL

TYPES (MEAN AND STANDARD DEVIATION)

Model Metrics REAL SYNTHETIC
MIXED

SYNTHETIC

YOLO
Precision ↑ 0.703 0.694 0.776

±0.007 ±0.013 ±0.011

Recall ↑ 0.831 0.826 0.901
±0.003 ±0.011 ±0.015

U-Net
IoU ↑ 0.617 0.601 0.683

±0.008 ±0.011 ±0.012

Dice ↑ 0.763 0.751 0.812
±0.004 ±0.009 ±0.013

for training neural networks. We focus on two common
downstream tasks in RAMIS: object detection and semantic
segmentation. Specifically, we use YOLOv5 [35] for object
detection and U-Net [36] for semantic segmentation, both
using our automatically generated labels.

During data acquisition, we collected an additional dataset
to serve as a test set. This dataset contains 300 images featur-
ing various backgrounds, instrument poses, and deformations.
For YOLO and U-Net, we train three models from different
source datasets: 1. real images with GT pose, 2. Synthetic
rendering of the GT pose, and 3. a mix of rendered GT pose
and new unseen poses. Each dataset contains 1780 images. All
training sessions were executed on an NVIDIA GeForce RTX
4050(6G).

Both YOLO and U-Net are trained with their default param-
eters for 300 epochs. For YOLOv5, we use precision and recall
as performance metrics, while for U-Net, we use IoU and Dice
coefficients. To mitigate the effect of randomness on model
performance evaluation, we conduct multi-folder experiments
for each model.

Table II summarizes the performance of models trained with
different image sets on the test dataset. For YOLO, we observe
that the performance of the GT model and the Render model
is very similar, with differences in Precision and Recall not
exceeding 0.01. This indicates that neural networks trained
with Render images can achieve performance comparable to
those trained with GT images. The Augment model outper-
forms both the GT and Render models because it is trained
with rendered images that include unseen deformations and
different camera viewpoints, enhancing the diversity of the
training dataset. This diversity allows the model to cover a
wider range of deformations and scenarios during training,
resulting in better performance.

For U-Net, we observe similar conclusions. The GT and
Render models perform closely, while the Augment model
demonstrates superior performance due to data augmentation.
Notably, the Render and Augment models exhibit larger
standard deviations compared to the GT model across all
metrics. This is because rendered images lack the fine texture
details of GT images, and background boundary rendering
may introduce blurring, affecting overall performance and
increasing standard deviations.

Overall, whether using YOLO or U-Net, the differences in
performance metrics between the GT and Render models are

Fig. 9. Ablation study results: (a) GT image, (b) results with both
Dynamic Density Control and Uniform Motion Rendering applied, (c)
without Dynamic Density Control, (d) without Uniform Motion Rendering.

less than 1.5%, while the Augment model shows nearly a
10% performance improvement compared to the GT model.
This demonstrates that our synthetic images can not only
train neural networks effectively, but alsoenhances the dataset
by generating novel viewpoints and tool locations, improving
training performance compared to GT images alone.

V. ABLATION STUDY

Dynamic Training Adjustment is crucial in our method to
address the challenges posed by poor camera pose estimates.
We conducted ablation studies to validate the contributions
of various training strategies within the Dynamic Training
Adjustment framework. Specifically, Dynamic Density Control
and Uniform Motion Rendering directly influence the render-
ing quality, so we visualized the impact of these modules
on our proposed method. As shown in Fig. 9, the training
without Dynamic Density Control (c) results in extremely poor
rendering quality, while the absence of Uniform Motion Ren-
dering (d) fails to accurately render the surgical instruments.
In fact, without Dynamic Density Control, the model is likely
to encounter training failures. We conducted multiple experi-
ments on the Liver, Bowel, and Stomach datasets, recalibrating
the camera poses for each input image using COLMAP with
different parameter settings to obtain more accurate poses.
However, we found that without Dynamic Density Control, the
model had nearly an 80% chance of failing to complete the
training, regardless of the COLMAP settings. This underscores
the importance of this method in our study.

VI. CONCLUSION

This paper presents a novel pipeline for generating surgical
instrument deformation images, contributing to the creation
of realistic and diverse surgical image datasets compared
to existing methods. Our approach introduces dynamic 3D
Gaussian models to represent the deformation of instruments
in dynamic surgical scenes and employs a dynamic density
control strategy to address the challenges posed by poor cam-
era poses in real-world datasets, which often hinder training.
Our contributions include a novel surgical instrument image
generation framework capable of rendering images from new
viewpoints and unseen deformations, as well as a dynamic
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training adjustment strategy that enhances the applicability
of Gaussian splatting-based methods on real-world datasets.
Additionally, our method can generate accurate annotation
files, addressing the significant challenge of the lack of an-
notated data in medical imaging datasets. Our experiments
demonstrate promising results, outperforming recent work and
achieving object detection and segmentation performances that
closely resemble those of models trained on GT imaging.
Moreover, the datasets generated using our method’s capability
to render new deformations and viewpoints further surpass
the performance of models trained solely on GT imaging. By
leveraging the dynamic nature of our approach, we address
significant limitations in current methodologies, paving the
way for more effective training and application of neural
networks in automation surgery.
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