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Abstract. Computer vision technologies markedly enhance the automa-
tion capabilities of robotic-assisted minimally invasive surgery (RAMIS)
through advanced tool tracking, detection, and localization. However,
the limited availability of comprehensive surgical datasets for training
represents a significant challenge in this field. This research introduces
a novel method that employs 3D Gaussian Splatting to generate syn-
thetic surgical datasets. We propose a method for extracting and com-
bining 3D Gaussian representations of surgical instruments and back-
ground operating environments, transforming and combining them to
generate high-fidelity synthetic surgical scenarios. We developed a data
recording system capable of acquiring images alongside tool and camera
poses in a surgical scene. Using this pose data, we synthetically replicate
the scene, thereby enabling direct comparisons of the synthetic image
quality (27.796±1.796 PSNR). As a further validation, we compared two
YOLOv5 models trained on the synthetic and real data, respectively, and
assessed their performance in an unseen real-world test dataset. Com-
paring the performances, we observe an improvement in neural network
performance, with the synthetic-trained model outperforming the real-
world trained model by 12%, testing both on real-world data.

Keywords: 3D Reconstruction · 3D Gaussian Splatting · Medical Imag-
ing Processing.

1 Introduction

Detecting and tracking surgical instruments are crucial data sources used in the
automation of Robotic-Assisted Minimally Invasive Surgery (RAMIS), providing
essential proprioceptive data to the robot [13, 8, 11]. The robot’s forward kine-
matics give a general measure of tool pose; however, the inherent compliance
in cable-driven surgical robotic mechanisms, designed to ensure surgical safety
and adaptability, can introduce positional inaccuracies, complicating the precise
tracking and detection of instrument end-effectors [2]. Computer vision technolo-
gies offer a solution to this inaccuracy; however, the lack of high-quality labeled
data available in surgical settings often complicates the training and supervision
of learning-based methods.
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Previous studies [3, 5] have explored creating artificial surgical images from real-
world images to combat data scarcity. Using game engines [16, 21] offers a scal-
able, noise-free solution but fails to accurately replicate real surface properties
and textures. Generative neural networks can produce fully synthetic datasets of
surgical scenes, including tools, by training on surgical environments [1, 7, 9, 15,
6]. However, this method has limitations: the position and pose of instruments
in generated images are fixed and uneditable, it lacks scalability as different
scenes require retraining the whole network, and annotating datasets remains
a time-consuming and complex task with few methods providing corresponding
annotation information.
Neural Radiance Fields (NeRF) [12] construct an implicit 3D model of a scene
from photographs taken at known positions, enabling the rendering of 2D images
from new, unseen viewpoints, thus generating diverse image datasets. EndoNeRF
[22] first applied NeRF in surgery, removing instruments from dynamic videos
of soft tissue manipulation to reveal unobstructed tissue images. Psychogyios et
al. [17] trained a light source location-conditioned NeRF to encapsulate a colon
sequence’s 3D and color information, generating new image datasets. NeRF-
based methods surpass generative neural networks in image quality and dataset
diversity by producing 2D images from various viewpoints. However, images gen-
erated by these methods do not include surgical instruments, as their removal is
a prerequisite for operation. Consequently, such outputs are unsuitable for direct
use in neural network training.
The 3D Gaussian Splatting [10] method advances the concept of scene represen-
tation and rendering by offering a novel approach to modeling 3D scenes from a
collection of images. This method emphasizes explicit representation and high-
quality real-time rendering, allowing for generating detailed and photo-realistic
images from new viewpoints [4]. The high-quality image rendering, explicit scene
representation, and rapid training times of 3D Gaussian Splatting position it as a
potential method to overcome the drawbacks of image dataset generation meth-
ods based on NeRF.

Fig. 1. Pipeline of proposed method.
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Our approach leverages 3D Gaussian Splatting to produce a novel method
that enables the creation of image datasets featuring various surgical instru-
ments across different surgical scenes. The method offers capabilities for scene
editing and novel scene synthesis to enhance dataset diversity. Our key contri-
butions are as follows: 1) We are the first to apply 3D Gaussian Splatting for
medical dataset generation, offering a new methodological route for creating a
surgical image dataset. 2) We developed a technique for precise editing of 3D
Gaussian models, allowing independent training and a flexible combination of
surgical scenes and instrument models. 3) The proposed method can automati-
cally generate accurate annotation information alongside image datasets. 4) We
demonstrate the high quality of the synthetic image datasets produced by our
method and their potential for neural network training.

2 Methods

As shown in Figure 1, our method first requires a set of images of the surgical
scene and surgical instruments with known camera intrinsic and extrinsic pa-
rameters, obtainable through tracking the camera’s motion path or using struc-
ture from motion (SFM) methods like COLMAP [19]. Then, we separately train
3D Gaussian representations for the surgical scene and instruments. Next, we
extract the Gaussian representation of the surgical instruments from the back-
ground and perform necessary edits, such as translation and rotation. Following
this, we fuse the instrument’s Gaussian representation with that of the surgical
scene, resulting in a scene that includes the surgical instruments. Utilizing the
fused Gaussian scene enables the rendering of 2D images with varying poses
from multiple viewpoints, facilitating the creation of an image dataset for neural
network training.

2.1 Preliminary: Gaussian Splatting

3D Gaussian Splatting [10] is a technique for representing static 3D scenes, dis-
tinguished by its differentiability and the ease with which it can be projected
into 2D splats. This feature enables efficient α-blending for rapid image render-
ing. The 3D scenes are represented by a collection of 3D Gaussians defined by a
mean µ and covariance matrix Σ, described in the equation:

G(x) =
1

(2π)3/2|Σ|1/2
e−

1
2 (x−µ)TΣ−1 1

2 (x−µ) (1)

Where Σ is decomposed into rotation matrix R and scaling matrix S, writing
as Σ = RSSTRT. The 3D Gaussians are enhanced with opacity and spherical
harmonic (SH) coefficients for color representation, enabling the depiction of
anisotropic appearances. These Gaussians encapsulate the 3D spatial informa-
tion of scenes through learned attributes, which are refined during the training
process. Gaussian density control step is also implemented to interleave these
Gaussians effectively. Our work is based on 3D Gaussian Splatting, wherein we
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initially train two distinct Gaussian models: one for the surgical scene and an-
other for the surgical instrument.

2.2 Gaussian Extraction and Labelling

After training, we obtain Gaussian models for both the surgical scene and instru-
ments, with the instrument model capturing both the tool and its background.
For Gaussian model fusion, we aim to isolate and use only those Gaussians rep-
resenting the instruments, necessitating a method to segment these from the
background representation. In our instrument Gaussian model, the tool Gaus-
sians are densely centered with sparse background Gaussians distributed in the
distance. This allows for extraction by selecting center-distributed Gaussians
and filtering out others.

Fig. 2. Using circular sampling, we center the surgical tool in the scene, resulting in a
dense distribution at the center (highlighted by a red rectangle).

Labeling Gaussian models representing surgical instruments is crucial for
the subsequent fusion process, where adjustments to the Gaussians’ orientations
and positions are required. Although conceptually simple, this labeling neces-
sitates significant changes to the program’s data structures, making it complex
and labor-intensive. An efficient alternative uses existing Gaussian properties,
notably the color difference between instruments and scenes, as natural labels.
In Gaussians, color is represented using the Spherical Harmonics (SH) function
[10]. Therefore, instruments can be labeled by tagging the SH function’s direct
current component within the Gaussians, generating a secondary tool represen-
tation solely for data labeling.

2.3 Gaussian Scene Fusion

Once we have obtained 3D Gaussian representations of the surgical scene and
the segmented surgical instruments, we can then combine the two to produce
a fully synthetic scenario with a specified tool pose. The representation of 3D
Gaussians is independent; as long as the properties of an individual Gaussian
are not altered, adding new Gaussians to a Gaussian model does not affect its
representation [10]. Therefore, we can achieve Gaussian scene fusion by incor-
porating the extracted surgical instrument into the surgical scene. However, the
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fused model at this stage is not yet suitable for generating synthetic images.
For each synthetic image, we must transform the instrument Gaussian to match
its intended location with respect to the camera and background. 3D Gaussians
are represented by their mean µ and covariance Σ, indicating their position and
orientation [10], which can be adjusted to correct the Gaussians’ pose in the
fused scene as:

G′(x) =
1

(2π)3/2|Σ′|1/2
e−

1
2 (x−µ′)

T
Σ′−1(x−µ′)

where : µ′ = µ+∆µ;Σ′ = RΣRT

(2)

Where ∆µ denotes the translation of Gaussians, R denotes the rotation of
Gaussians. By editing the fused Gaussians, we can generate synthetic images in
arbitrary orientations and positions of the camera and instrument.

2.4 Automatic Annotation Generation

As an extension of the fused Gaussian representation, we can generate a pixel-
wise segmentation mask that clearly delineates tool boundaries in synthetic im-
ages. By exclusively rendering the tool Gaussian, labeled accordingly, we utilize
the differential Gaussian rasterization pipeline introduced by [10]. These 3D
Gaussians are projected into 2D using the covariance matrix Σ′:

Σ′ = JWΣWTJT , (3)

where J is the Jacobian from the affine approximation of the projective transfor-
mation, W is the view matrix for world-to-camera coordinates, and Σ is the 3D
covariance matrix. Pixel colors on the image plane, denoted by C, are computed
by α-blending the contributions of Gaussians ordered from nearest to farthest:

C =
∑
i∈N

αici

i−1∏
j=1

(1− αj), (4)

αi = σie
− 1

2 (µ−ui)
TΣ′(µ−ui), (5)

where ci is the color of each Gaussian, and ui represents their projected uv
coordinates. Rendering only the tool Gaussians, the background appears black
(C = 0). In the resulting 2D image, only the surgical instrument regions are
colored, enabling clear segmentation. By setting a contrast threshold, we differ-
entiate the black background (background) from the colored instrument (fore-
ground) to generate the 2D mask. This mask allows for the application of contour
detection algorithms to define the contours of the foreground. The pixel coor-
dinates of these bounding boxes facilitate the automated creation of annotation
files.
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2.5 Experimental Data Recording

In order to assess our synthetic images, we present a novel methodology for
acquiring images and instrument poses (camera and tools) from real scenarios.
Images with tools are used for validation, but realistic backgrounds and tools
are not mixed during the generation of Gaussian representation. Fresh ex-vivo
lamb liver, kidney, and fat placed within a laparoscopic trainer platform (POP
Trainer, Optimist GMBH, Austria) to mimic the surgical scene. We use a clinical
laparoscopic camera from the daVinci Surgical System (HD-2 Stereoendoscope
Module, Intuitive Surgical) for image collection, and a daVinci Large Needle
Driver as our tool. Given the current requirement for a rigid tool, we fixed all
joints in a neutral position. We utilise the NDI Aurora electromagnetic tracking
system with 6DoF sensors for our Ground Truth pose of the tool and camera.
Image and pose data were collected synchronously. The setup for surgical data
acquisition is depicted in Figure 3.

Fig. 3. Our dataset recording platform.

In the dataset, we recorded three distinct videos. 1) A training dataset for
representing the background scene with no tools present; 2) An isolated ac-
quisition of the surgical tools; and 3) A ground truth dataset containing both
background and tool, designated below as the Ground Truth (GT) dataset. An
additional test dataset mimicking the GT dataset was also recorded.

3 Experiments and Results

After acquiring all three data sets (Background, Tool, GT), we utilized the tool
and camera positions within the GT dataset as direct inputs to the image syn-
thesis. This approach guarantees that generating images that align with the GT
images regarding the same camera and surgical instrument positions is feasible,
replicating the GT image with a synthesized version. Consequently, real-world
images can be a test case for synthetic images under such conditions.
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3.1 Synthetic Image Quality Evaluation

A key challenge in image generation is obtaining precise GT images for direct
comparison. We utilize Gaussian editing and tool pose tracking to acquire accu-
rate GT images, a capability that sets our method apart from other generative
approaches, which often lack precise GT data. For evaluation, we focus on com-
paring our results with these GT images to accurately assess our method’s effec-
tiveness. We evaluate the quality of our synthesized images using Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS). We also overlay synthetic and GT
images to identify discrepancies. The results, illustrated in Figure 4, demon-
strate the superiority of our method in producing high-quality images in GT
scenes compared to alternatives. We conducted rigorous comparisons with two
state-of-the-art (SOTA) Nerf-based methods [12, 14, 20], chosen for their com-
parable training durations. The PSNR, SSIM, and LPIPS scores are presented
in Table 1.

Table 1. Comparative Analysis of Image Quality of GT Scene (Mean and standard
deviation).

Method PSNR ↑ SSIM ↑ LPIPS ↓

Instant-NGP 16.603±0.782 0.741±0.015 0.758±0.047
Nerfacto 22.736±1.435 0.796±0.016 0.394±0.035
Ours 27.796±1.796 0.912±0.029 0.287±0.022

Fig. 4. Illutsration of GT and Synthetic pairs for the most and least similar image,
indicating the regions of increased difference
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3.2 Neural Network Training Experiment

Next, we evaluated the efficacy of our synthesized images for training neural
networks, specifically using YOLOv5 [18] for object detection. We trained two
models: one on the GT Dataset and one on our synthetic data, both using 1568
images. For consistency, images were resized to 640x640 pixels, and training was
conducted for 100 epochs using YOLOv5’s default parameters. All training was
performed on an NVIDIA GeForce RTX 4050 (6G). Our test set comprised 300
images, each with unique combinations of camera and instrument poses. We as-
sessed precision and recall to determine the viability of training with synthesized
data and conducted multi-fold experiments for reliability. Table 2 shows our
results, indicating that models trained on generated images outperform those
trained on GT images in both precision and recall. This improvement is at-
tributed to our method’s ability to augment data by rendering images from new
viewpoints and instrument poses, providing stronger priors for detection.

Table 2. Performance Comparison of Neural Networks Trained with Synthetic vs.
Ground Truth Images on the 300 image real-world Test Dataset

Model Precision ↑ Recall ↑

Synthetic Training Input 0.801 0.901
GT Training Input 0.703 0.804

4 Conclusion

This paper introduces a novel surgical image dataset generation method based on
3D Gaussian Splatting, aiming to address the challenge of insufficient surgical im-
age datasets. We first trained Gaussian models representing surgical scenes and
instruments separately to achieve this. We adopted a circular sampling strategy
for the surgical scene Gaussian models, enabling accurate extraction and label-
ing of surgical instrument Gaussians. We created new scene models by fusing
the extracted surgical instrument Gaussians with those from the surgical scene,
allowing for image rendering of surgical instruments in any pose. This process
also auto-generates annotation information for surgical instruments. Our exper-
iments confirmed the high quality of images generated by our method, achieving
a PSNR of 29.592. Our generated datasets have been proven effective for training
neural networks, resulting in a 12% improvement in performance when models
are trained on generated images compared to those trained on ground truth
images. Currently, our method can generate and edit static image data of surgi-
cal tools within static scenes. This work hopes to alleviate the data scarcity in
the surgical domain and inspire further enhancement of 3D Gaussian Splatting
techniques for data generation.
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