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Abstract— Computer vision-based technologies signif-
icantly enhance surgical automation by advancing tool
tracking, detection, and localization. However, Current
data-driven approaches are data voracious requiring large
high-quality labeled image datasets which limits their ap-
plication in surgical data science. Our Work introduces a
novel dynamic Gaussian Splatting technique to address
the data scarcity in surgical image datasets. We propose
a dynamic Gaussian model to represent dynamic surgical
scenes, enabling the rendering of surgical instruments
from unseen viewpoints and deformations with real tissue
backgrounds. We utilize a dynamic training adjustment
strategy to address challenges posed by poorly calibrated
camera poses from real-world scenario. Additionally, we
propose a method based on dynamic Gaussians for the
generation of annotations for our synthetic data automat-
ically. For evaluation, we constructed a new dataset featur-
ing seven scenes with 14,000 frames of tool and camera
motion, as well as tool jaw articulation, with a background
of an ex-vivo porcine model. Using this dataset, we syn-
thetically replicate the scene deformation from the ground
truth data, allowing direct comparisons of synthetic im-
age quality. Experimental results illustrate that our method
generates photo-realistic labeled image datasets with the
highest values in Peak-Signal-to-Noise Ratio (29.87). We
further evaluate the performance of U-NetPlus and DBH-
YOLO models trained on real, synthetic, and mixed syn-
thetic images using an unseen real-world image dataset.
Our results show that the performance of models trained
on real and synthetic images differs by less than 1.5%
across various metrics, while the model trained on the
mixed synthetic dataset improves model performances by
nearly 15%.

Index Terms— Surgical Data Science, Surgical Al, Data
generation, 3D Gaussian splatting, Laparoscopy.

[. INTRODUCTION

OMPUTER vision has the potential to significantly en-
hance automation and intelligence in minimally invasive
procedures such as laparoscopic surgery. Advanced techniques
such as real-time tracking, segmentation, and classification of
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surgical instruments can facilitate intelligent surgical naviga-
tion, optimize surgical planning, and enhance overall surgical
efficiency and safety [1]. Achieving these goals relies heavily
on deep learning-based image understanding methods, such as
semantic segmentation and object detection.

Most deep learning-based methods used in surgical data
science are supervised, requiring a substantial amount of
annotated image data for training to ensure robustness in com-
plex and highly dynamic surgical scenarios. Although semi-
supervised, self-supervised, and few-shot learning approaches
exist, they often face challenges in achieving the same level of
performance as supervised methods [2]. However, the lack of
high-quality labeled surgical image datasets has constrained
the development of these methods [3]. This scarcity arises
from several factors: Ethical concerns in recording surgical
videos complicate the management and sharing of medical
data, while issues like limited field of view, lens distortion,
and frequent obstructions from tools, blood, and smoke during
procedures lead to poor image quality and incomplete visual
information [4]. These challenges make it difficult to generate
high-quality datasets, as detailed annotations require signifi-
cant time and expertise and are further impacted by annotator
subjectivity.

As a result, developing methodologies for addressing data
scarcity in laparoscopy has become a key research focus.
Using 3D virtual simulators to generate synthetic images
[5] and render textures using photo rendering software [6]
provides one option. However, these images often lack realism.
Alternatively, methods using SLAM techniques [7], [8] recon-
struct static surgical scenes. However, the limited capability in
generating labels and poor image quality restrict their effec-
tiveness in training robust neural networks. To overcome the
challenges of manual annotation and improve image quality,
some studies have explored the use of image synthesis [9]
and weak annotations [10]. Other works have proposed using
generative models and Image-to-Image Translation techniques
[11] to generate simulated data for model training. These
methods generate realistic images for static scenes but fall
short when applied to highly dynamic scenarios such as
laparoscopic surgery.

Neural Radiance Fields (NeRFs) [12] and 3D Gaussian
Splatting (3DGS) [13] have shown significant potential for
image dataset generation. Both methods can handle dynamic
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Fig. 1. Method Overview. (a) Our method takes images of surgical instruments in various poses as input. (b) Then we reconstruct the 3D Gaussian
representation of the surgical scene. (c) After the reconstruction, our method can predict the 3D Gaussian representation of unseen deformations
of the surgical instruments. (d) We render them as realistic images, and additionally can obtain the tool annotations automatically. In (d) the red
boxes indicate the bounding boxes, and the white areas represent the instrument segmentation masks.

scenes, and recent approaches that combine NeRFs or 3DGS
with time-dependent neural displacement fields [14], [15]
have become representative works in dynamic surgical scene
reconstruction. Compared to NeRF, 3DGS has an advan-
tage in reconstruction, enabling explicit scene representation
and offering scene-editing capabilities that NeRF lacks. This
makes 3DGS more suitable for reconstructing dynamic surgi-
cal scenes and generating corresponding image data. However,
it still faces several challenges.

Firstly, 3DGS-based methods excel with simulated datasets
due to access to ground truth camera poses and scene point
clouds. However, their performance deteriorates on real-world
datasets [16] due to reliance on Structure-from-Motion (SfM)
for camera pose calibration. In dynamic scenes, object move-
ment and deformation cause significant initialization errors,
as SfM struggles to match frames and register points ac-
curately [17], severely impacting 3DGS training. Moreover,
these methods cannot handle dynamic scenes with surgical
instruments, focusing instead on visualizing tissue deforma-
tions. This limits their applicability for tasks like instrument
detection, segmentation, and pose estimation, which are crucial
for surgical automation. Additionally, they only learn observed
deformations and cannot generate novel ones or annotated
data, requiring manual annotation for neural network training.
To overcome these challenges, we propose NeeCo, a novel
method for generating realistic surgical image datasets based
on 3DGS. Our contributions can be summarized as follows:

1.Novel Dynamic Surgical Instrument Reconstruction
Framework: We propose an innovative framework that syn-
thesizes novel scenes of kinematically-posable surgical instru-
ments, learned from previously observed images of recorded
instrument kinematics (position, rotation, and jaw aperture an-
gle). This framework can reconstruct instruments in dynamic
surgical scenes and predict the view under tool movement,
including unseen pose and position changes for instruments.

2.Dynamic Adjustment Method for 3DGS Training:
We introduce a method for dynamically adjusting the 3DGS
training process. We do this by adopting different training
strategies at various stages. Our approach addresses the chal-
lenges posed by poor initialization from inaccurate camera
poses when using our recorded surgically relevant scenes of
ex-vivo porcine organs as input.

3.Automatic Generation of Annotations: The proposed

method can automatically generate annotation information
alongside the rendered images without human intervention
based on the dynamic Gaussian kinematic changing.

4 Evaluation with Ground Truth (GT) Images of
Anatomy: We record a new dataset using ex-vivo abdominal
organs from a porcine model while tracking our tool state,
producing GT images and data that can be directly compared
with our generated images. Through comparative experiments
on image quality and neural network training using GT images
as the benchmark, we ensure the reliability of our conclusions
and show a marked increase in synthesis quality and compared
with comparable SOTA methods.

[1. RELATED WORK

This section examines significant advancements in surgical
scene reconstruction, focusing on traditional, implicit, and ex-
plicit representation methods. Given that our approach empha-
sizes the reconstruction and representation of surgical scenes
that include instruments, we also review current methodologies
for surgical instrument synthesis in medical imaging.

A. Surgical Scene Reconstruction

1) Traditional Representation: Early studies, such as [7], [8]
relied on stereo inputs to recover scene depth information
through SLAM techniques. These methods generated depth
maps via depth estimation and fused the depth maps from
multiple viewpoints in 3D space to achieve static scene
reconstruction. Subsequent advancements, such as [18] and
[19], introduced new stereo depth estimation frameworks by
tracking the deformations of key points in the scene, enabling
simple 3D deformable reconstruction. These methods heavily
rely on sparse deformation fields for tracking deformations
and are limited when faced with complex or significant defor-
mations, capturing only relatively small changes. Additionally,
the overall quality of the images generated by these methods
is often subpar, further limiting their effectiveness in training
robust neural networks.

2) Implicit Representation: Implicit representations, such as
NeRF [12], have significantly advanced medical imaging.
Unlike traditional methods that rely on spatial geometric
information and the tracking of key deformation points for
reconstruction, implicit representations use neural radiance
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fields and deformation fields to capture and represent scene
deformation. This combination facilitates the effective recon-
struction of dynamic scenes. Recently, EndoNeRF [15] has
emerged as a promising solution for dynamic surgical scene
reconstruction. It uses tool-guided ray casting, stereo depth-
cueing ray marching, and stereo depth-supervised optimization
to achieve high-quality results but suffers from lengthy training
times. To address this, Forplane [20] optimizes training by
conceptualizing surgical procedures as 4D volumes, decom-
posed into static and dynamic fields with orthogonal neural
planes, reducing memory usage and accelerating optimization.
However, these methods neglect the modeling of surgical
instruments and produce non-editable, limited generalization
scenes.

3) Explicit Representation: Explicit scene reconstruction
methods, such as 3DGS [13], overcome the limitations of
implicit representation methods, which are difficult to edit.
By manipulating the obtained scene 3D Gaussian, it is pos-
sible to rotate and translate objects within the scene without
sacrificing reconstruction quality. Additionally, these methods
enable rapid training and real-time rendering of the recon-
structed scenes. Similar to EndoNeRF [15], EndoGaussian
[14] and EndoGS [21] use 3D Gaussians to represent surgical
scenes. These methods process ordered images with contin-
uous deformations over time, segmenting them into static
scenes and introducing time-based deformation fields to stitch
them together, reconstructing tissue deformations in dynamic
surgical scenarios. However, they face significant challenges:
they struggle to accurately capture surgical instrument defor-
mations, can only reconstruct past scenes without predicting
future changes, and demand high-quality input data, including
continuous temporal changes and precise camera poses.

B. Instrument Synthesis in Medical Imaging

Various methods have been developed to generate surgical
instrument images. Game engines and surgical simulators [22],
[23] provide scalable, noise-free solutions that automatically
generate annotations. However, the synthetic images produced
by these methods often lack realism, failing to accurately
replicate the lighting and textures of real scenes, which can
negatively impact the generalizability of models trained on
such data. Generative neural networks like GANs and Cycle-
GANSs [24], [25], [26] can create synthetic datasets that closely
resemble real image distributions, achieving higher image
quality. However, these methods can typically only generate
pseudo annotations for tasks like segmentation, and they often
fall short of providing the high-quality, accurate annotations
required for supervised learning. Recent approaches [27],
[28] have attempted to integrate simulation environments with
generative networks, enhancing simulated medical images with
real image characteristics to produce high-quality, annotated
synthetic datasets. Nevertheless, these methods are primarily
designed for static scenes and struggle to modify the pose, ori-
entation, and deformation of instrument end-effectors, which
limits their effectiveness in dynamic surgical environments.

[1l. METHODOLOGY

We propose a method for synthesizing realistic images of
surgical instruments exploiting the recent advances in 3D
Gaussian Splatting. Our approach allows for dynamic selection
of both the user’s viewpoint and the instrument’s kinematic
state (6-DoF pose and jaw aperture angle), allowing for a
user to train a 3DGS model on a limited size dataset before
synthesizing supplemental images to enhance the performance
of neural networks trained on the data. Our model is trained
from a monocular video of a moving surgical instrument
in a surgical scene; each frame is recorded with kinematic
information of the tool’s current state. From this, we train a
deformable Gaussian model using an MLP to decode user-
specified instrument states. Our approach utilizes multiple
enhancements to the training method of deformable Gaussian
models, namely dynamically adjusting the training rates of the
Gaussian’s properties, uniform motion rendering, and dynamic
compensation of camera poses. We also use our trained
Gaussian model to automatically generate segmentation masks
and relevant instrument bounding boxes before proving the
quality of our image synthesis to enhance the performance of
Al-based tool detection and segmentation.

A. Preliminary: 3D Gaussian Splatting

3DGS utilises a field of explicitly defined Gaussians in 3D
space to define and render a 2D scene [13]. We initialize our
3D Gaussians from point clouds generated by COLMAP [29],
following the specified mathematical expression:

G(z) = e s(@—m) T (@—p) (1)

where p denotes the mean value of the point cloud P(z,y, z)
and X is a 3D covariance matrix, expressed as X =
RSSTRT. Here, R denotes a 3 x 3 rotation matrix, and S is
a 3 x 3 diagonal matrix representing the scale. To simplify its
representation, the rotation matrix R is converted into a vector
r. These 3D Gaussians are projected into 2D and rendered for
each pixel using the following 2D covariance matrix X'

> = JWEIwTJgT, 2

where J is the Jacobian of the affine approximation of the
projective transformation, W is the view matrix transitioning
from world to camera coordinates, and X denotes the 3D
covariance matrix.

The color of the pixel on the image plane, denoted by C, is
calculated by a-blending the contributions of the N Gaussians,
which are sorted from closest to farthest:

i—1

C= ZaiciH(l—aj) (3)
i€EN j=1

o = gie_%(l‘_“i)TE,(N—ui) (4)

where c¢; represents the color of each Gaussian along the
ray, and u; denotes the uv coordinates of the 3D Gaussians
projected onto the 2D image plane.

During initialization, the Gaussian is also assigned an opac-
ity attribute o, thus the 3D Gaussian is defined as:

G(p,r,s,0) &)
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Fig. 2. Training Process Overview. Given a set of unordered images of a laparoscopic surgery procedure, our method represents the dynamic
scene using 3D Gaussians. It synthesizes the Gaussian representation of the instrument in a new pose from novel viewpoints. The standard 3D
Gaussian scene representation is trained in a canonical space. An MLP estimates the attribute changes during scene deformation, transforming
the canonical Gaussians to the new deformation. The transformed Gaussians are then rendered using rasterization. The rendered images are
compared with ground truth images to evaluate the training. The entire training process is optimized using a dynamic optimization strategy.

B. Deformable Gaussian Splatting

When part of the scene undergoes deformations, the Gaus-
sian properties in the deformation regions are varied to repre-
sent the new state, expressed as:

G' (w7, s 0")=G(u+du,r+dér,s+ds,0+d0) (6)

To mitigate the impact of dynamic changes in the scene, we
train this standard Gaussian model in the canonical space.
To decode from our canonical model C, we use an MLP
to model the required parametric change in p,r, and s for
each Gaussian, referred to as the New Pose Synthesis (NPS)
weight F, with depth and hidden layer size of D = 12
and W = 256, respectively. The NPS weight takes two
inputs: a representation of object movement in the scene, p,
and the coordinates of the Gaussian centers in the previous
frame, p. The parameter p primarily represents positional
changes (translation), while p, which includes the rotation and
jaw aperture change of the laparoscopic instrument, captures
the instrument’s deformation. Together, these two parameters
effectively represent the scene’s deformations. We use a po-
sitional encoder () on both p and g (adapted from [12]) to
enhance training quality, where:

y(p) = (sin(QkWu),cos(QkWM))éz_& )

Resulting in:

(6p, 07, d8) = F(v(p),v(p)) 8)

And giving the final representation of the synthesised scene
as:

G'=C+ F(v(p),v(w) ©)

We do not update the opacity ¢ during this process, as it
primarily affects the rendering process by determining the final
rendered color. Since instruments typically keep to a constant
colour space regardless of pose, we do not estimate the opacity.
Nevertheless, o of the Gaussian in the canonical space is still
optimized during training.

It is worth noting that methods like 4DGS [30] and D-3DGS
[16] also use MLPs to model dynamic scenes. However, in
these methods, the primary aim of the MLP is to decouple
continuous dynamic scenes into multiple static scenes. The
MLPs in these methods use a time parameter ¢ to reconstruct
learned scenes within the timeframe of the parent video. In
essence, they do not treat the dynamic scene as a whole;
instead, the MLP learns the Gaussian representation of each
decoupled static scene individually, requiring the input data to
be temporally continuous and within range of the training data.
In contrast, the MLP in our approach is designed to predict
changes in Gaussian attributes based on object movement,
training and learning from the dynamic scene as a whole.
Consequently, our method can handle unordered image inputs
and generate scenes from object movement outside of the
observed values.

C. Deformable Gaussian Training

The input is unordered images that capture a dynamic
surgical scene with instrument deformation. Initially, we use
SfM to calibrate the camera pose and generate a sparse point
cloud representing the scene, along with the object movement
parameter p for each frame. The sparse point cloud is then
initialized into Gaussians and transferred into the canonical
space for training. As the scene transitions from between
frames, the Gaussian attributes g and p of the current frame
are encoded and fed into the NPS weight, which attributes
necessary to transform the Gaussians from the current frame
to the next.

As training progresses, the NPS weight gradually learns
to induce changes in the scene’s Gaussian representation. As
this is built from changes in g and p between two frames,
we can generate new frames by inputting arbitrary p and
p values. We further validate this ability to generate high-
quality Gaussians representing unseen scene transformations
in the experimental section V] Following the 3DGS [13], we
render the transformed scene’s Gaussians into an image. This
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Fig. 3. Dynamic Density Control. In the first phase of training, the
Gaussian distributions are newly initialized and contain numerous error
points. During this phase, the loss function shows fluctuations, and the
PSNR values are low but steadily increasing. In the second phase, the
density control is gradually relaxed throughout the iterations, allowing
for the splitting and cloning of Gaussian points to further enhance the
training quality.

rendered image is then compared with the ground truth image
of the transformed scene to calculate the loss function £, a
combination of £, loss and a D-SSIM term:

L= (1-XLy+ Alp.ssim (10)

It is important to note that the rendering process heavily
depends on accurate camera poses. SSIM (Structural Similarity
Index Measure) is sensitive to spatial relationships within the
image, and viewpoint discrepancies can lead to significant
visual differences and cause SSIM to drop sharply. Therefore,
we assign a higher weight (1 — A = 0.9) to the £; term,
reducing the weight of the L£p.gsiv term and minimizing the
impact of camera pose errors on the training outcome. After
calculating the loss, we update the attributes of the Gaussians
in the canonical space and all NPS weight parameters. Fig. 2]
summarizes our training process.

D. Dynamic Training Adjustment

1) Dynamic Density Control Adjustment: Density control is
essential to the 3DGS pipeline; it enhances scene detail by
cloning small Gaussians in sparse areas and splitting large ones
in dense areas. It is predefined before training by three param-
eters: the densification interval Py;, the opacity reset interval
P,;, and a positional gradient threshold 7. It is, however,
particularly sensitive to initialization errors. Incorrect camera
poses introduce numerous erroneous points into the initialized
Gaussian models, and density control can exacerbate these
errors by misplacing or redundantly multiplying error-prone
Gaussians, eventually causing training failure. While 3DGS
can correct errors in static scenes, its robustness is compro-
mised with dynamic datasets, as premature density control
amplifies errors beyond its corrective capabilities. These fixed
parameters do not accommodate the rapid dynamics of real-
world scenes. Removing or delaying density control can
mitigate these issues but may compromise the overall quality
of the Gaussian representation, as density control is crucial for
enhancing fidelity and detail.

We propose an adaptive density control strategy, illustrated
in Fig. 3] We partition the training into two phases, guided
by reductions in the loss function and improvements in the
Peak Signal-to-Noise Ratio (PSNR) of rendered images, and
dynamically adjust the density control during the training

Frame 1 Frame 2 Frame 3
Background Random Rendering
Instrument g " ==ar__
\ _________________________
___________________________ >
Frame 1 Frame 2 Frame 3

Uniform Motion Rendering

Fig. 4. Uniform Motion Rendering: The first row shows random ren-
dering, where the instrument undergoes significant changes between
frames. The second row shows uniform motion rendering, where the
instrument’s movement between frames is more consistent.

process. Existing works [31], [32] also explored the density
control module in Gaussian Splatting, focusing on enhancing
image detail. However, they do not address the negative impact
of erroneous initialization on the training process.

In the first phase, Gaussians are newly initialized and often
contain numerous errors. During this initial phase, we restrict
density control to prioritize correcting these erroneous points
to their accurate positions. We extend densification and opacity
reset intervals and increase the gradient threshold, setting
Py; =500, P,; = 10,000, and 7,,, = 0.0004. Once the erro-
neous points are largely corrected in the first phase, the second
phase commences as PSNR values exceed 20 and the loss
function consistently declines. Here, we reintroduce density
control, enhanceing geometric detail and refines overlapping
areas, significantly improving model accuracy and robustness.
Parameters for this phase are set to Py = 200, P,; = 3000,
and 7,5 = 0.0002.

2) Dynamic Spherical Harmonics Function Update: Similar
to dynamic density control, we adopt an adaptive strategy for
updating Spherical Harmonics (SH) coefficients. SH captures
illumination, and details in complex scenes, with higher-order
SH coefficients, representing finer details but resulting in
increased training complexity. In the early training stages, we
restrict SH updates to lower orders, focusing on correcting
erroneous Gaussian initialization rather than complex details
to reduce computational overhead and accelerate convergence
(primarily learning basic lighting and geometric structure). As
training progresses, we increase the order of SH updates to
capture more complex details, learn finer variations in lighting
and scene details, and improve overall rendering performance.
This strategy ensures initial stability and fully leverages
higher-order SH’s expressive power for high-precision scene
reconstruction.

3) Uniform Motion Rendering: In the original 3DGS training
process, input images are randomly selected during training.
However, since our input images include different instrument
poses, randomly selected images present significant varia-
tions in the instrument’s appearance between two consecu-
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tive images. An instrument part visible in one frame might
become occluded in the next. These substantial variations
pose challenges for the NPS Weight to accurately predict
Gaussian changes in the early stages of training, causing a
larger computed loss and slowing down the convergence of
the training process.

To address this issue, we introduce uniform motion simu-
lation as shown in Fig. [4] In the first training phase, we sort
the images according to the pose positions of the instrument,
simulating a uniform motion with slow changes. These smaller
object motions (p) are easier to learn, enabling the training
process to converge more quickly. Once the training progresses
to the second phase, we revert to the random rendering
strategy, allowing the model to adapt to larger variations in
the instrument’s poses. Gradually introducing larger variations
helps the NPS learn and adapt to complex changes in the
instrument, thereby enhancing the overall performance and
robustness of the model.

4) Dynamic Camera Pose Compensation: Training with im-
precise poses may negatively impact the training process.
Inaccurate camera poses in real-world datasets can cause
spatial jitter between frames in the test or training set, resulting
in significant deviations between the rendered test images and
the ground truth [33]. We propose a compensation mechanism
for the rendering jitter caused by inaccurate camera poses.
Previous works [16], [34] either directly compensate for
camera poses using estimates from visual-inertial odometry
(VIO) or are specifically designed for tasks involving temporal
interpolation. In contrast, our compensation method can adapt
to errors introduced by camera movements in all directions and
is applicable in stages, aligning seamlessly with the dynamic
training process outlined in this work. This compensation
primarily occurs in the first phase of training:

(6p,0m,68) = F(v(p),v(p) + A)
A = (N(O, ].) - 05) . B : tphase

(1)
12)

where A represents the compensation, A (0,1) denotes the
standard Gaussian distribution, and subtracting 0.5 adjusts the
value range from [0, 1] to [—0.5,0.5]. This adjustment allows
for the simulation of camera pose errors in both positive
and negative directions. The scaling factor 3 is empirically
determined and has a value of 0.3. £,,4s¢ is a boolean value
used to determine the current training phase; it is set to 1
during the first phase and O during the second phase.

E. Automatic Annotation Generation

We generate dataset annotations in two steps. First, we gen-
erate a segmentation mask, and second, we use this to define
a bounding box for detection. When instrument movement
occurs, Gaussians (G) in the scene may be represented as
G'(u+dp, r+or,s+ds,0). When rendered with a new pose,
the NPS weights (du, d7,ds) for the instrument (the moving
part of the scene), are much greater than those observed in the
background (mainly static). To identify significant changes, we
experimentally establish a variation threshold Hs,,, Hsr, Hss-
If the increment in Gaussian attributes exceeds this threshold,

we consider it indicative of substantial deformation, labelling
these Gaussians as constituents of the instrument.

By rendering only the Gaussians corresponding to the
surgical instrument, we can effectively generate a segmented
image of the tool: the background is devoid of Gaussians and
will consequently be rendered black, while the instrument is
colored as normal (with some artifacts around the edges as
a result of low opacity regions of the perimetric Gaussians.
We set a threshold of the pixel’s RGB magnitude on this
segmented rendered image, generating a binary segmentation
mask. With this mask, we can automatically generate min-
imum bounding boxes using the mask’s outer contour and
bounding boxes using the extremity pixel coordinates.

V. EXPERIMENT
A. Data Recording and Experimental Setup

1) Dataset Collection: Due to the lack of publicly available
datasets suitable for our method, which requires simultane-
ous camera movement and 7-DoF instrument kinematics, we
have constructed an experimental platform for data collection.
Our experimental setup consists of a laparoscope (Endoskill,
MedEasy, China), laparoscopic instruments (MedEasy, China),
an electromagnetic (EM) tracking system (Aurora, NDI,
Canada), allowing 6-DoF motion tracking of the instrument
and laparoscope. Additionally, we modified the instrument
handle with a Hall-effect sensor to measure the jaw opening
angle. Fig. [5] shows the data recording platform.

We used ex-vivo pig tissue and organs during data collection
to create a more realistic surgical environment. Organs were
harvested from pigs reared and slaughtered for the food chain.
We collected data from various tissues and organs, including
the liver, stomach, and colon. These tissues and organs exhibit
different visual characteristics such as color, texture, and
shape, effectively simulating different surgical environments
within the human abdomen. During recording, we used the EM
tracker and jaw angle sensor to capture the 7-DoF data of the
surgical tools and the camera’s 6-DoF pose. We exclusively
utilized lighting sources from the laparoscope to achieve a
more realistic simulation of real-world surgical scenarios.

Our Gaussian model training dataset consists of three
videos, each of a subject organ from our ex-vivo experimental
setup (colon, liver, stomach), containing 576000 frames with
associated instrument states. To avoid redundancy, we sampled
14000 frames which were used as a training and validation
set for training the segmentation and detection Neural Net-
works. We collected an additional dataset as a test set. This
dataset contains 300 images featuring various backgrounds,
instrument poses, and deformations not seen in our training
data.

2) Implementation Details: We implement our Gaussian
model training pipeline using Pytorch. All Gaussian models
were trained on an NVIDIA RTX Ada 4500 graphics card
and Intel Xeon W5-2455X CPU. Aside from those set by our
Dynamic Training Adjustment, all other training parameters
are set based on the initial 3DGS work.

We train our Neural Network evaluators on an NVIDIA RTX
4050(6G) graphics card and Intel i17-12650H CPU. All models
were trained using their default parameters for 300 epochs.
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Fig. 5. Data recording platform.

3) Evaluation Metrics: For our image quality comparison,
we render full images to compare against the GT. Therefore,
we utilize three comparative evaluation metrics that compute
similarity over the full image: SSIM, PSNR, and LPIPS,
typically used within synthetic image generation [13], [16],
[35]. For our Neural Network evaluators, we use Precision and
Recall for object detection and IoU and Dice for segmentation.
To mitigate the effect of randomness on model performance
evaluation, we conduct multi-fold experiments for each model.

B. Image Quality Experiment

Our image quality experiments evaluated the images ren-
dered by the proposed method, comparing them with the GT
(the last three images in Fig. [). We replicate our GT images
by inputting the GT 7-DoF data, allowing the model to render
the identical scene as observed in the GT images (column 1 in
Fig[6). We overlaid the rendered images with the GT images to
generate PSNR difference maps, visualizing the discrepancies
between them. As shown in Fig[f] the red areas, indicating
discrepancies, are primarily located in the detailed regions of
the surgical tool jaw and the image edges.

We selected several state-of-the-art (SOTA) methods for
comparison, including 3DGS [13], NeRFies [35], 4DGS [30],
and D-3DGS [16]. Due to the inability of 4DGS [30] and
D-3DGS [16] to function properly on our collected real-
world dataset (due to inaccurate camera poses calibration from
SfM), we incorporated the dynamic density control
from our proposed method into these two methods to ensure
they could operate on our dataset. The rendering results of
all the comparison methods are visualized in Fig. [7] Table [[|
summarizes the quantitative results on different datasets.

As shown in Table [l the rendered images from our pro-
posed method outperform the SOTA methods across various
evaluation metrics on different background datasets. Moreover,
our method achieves satisfactory results even for unseen de-
formations. From Fig. [/} it can be observed that, although the
proposed method exhibits some blurring in certain background
regions, it excels in rendering surgical instruments, with both
the main body and jaw rendered clearly and closely resembling
the GT images.

3DGS [13] struggles to accurately render static surgical
tools in dynamic scenes, while NeRFies [35] can only partially
render surgical instruments, producing blurry and unrecog-
nizable results. NeRFies’ reliance on highly accurate camera
poses, which are difficult to obtain in real-world settings,

leads to poor performance with inaccurate poses. With the
implementation of our Dynamic Density Control, 4DGS [30]
and D-3DGS [16] could be applied to real-world datasets,
but their rendering quality remained inferior to our proposed
method.

C. Neural Network Training Experiment

In our neural network training experiments, we validate the
effectiveness of the proposed method using rendered images
for training neural networks. We focus on two common
downstream tasks in RAMIS: object detection and seman-
tic segmentation. We employ well-established and widely-
used models in the respective domains: YOLOvS [36] for
object detection and U-Net [37] for semantic segmentation.
Additionally, to align with domain-specific benchmarks in
medical imaging, we utilize SOTA neural networks specifically
designed for surgical tool detection and segmentation. Specif-
ically, we incorporate DBH-YOLO [38] for object detection
and U-NetPlus [39] for semantic segmentation, leveraging our
automatically generated labels.

We train six versions of each model from different source
datasets: 1. real images with GT pose, 2. real image augmented
by standard data augmentation [40]. 3 & 4. synthetic rendering
by D-3DGS [16] & 4DGS [30], respectively, 5. synthetic
NeeCo rendering of the GT pose, 6. a mix of NeeCo rendered
GT pose and new unseen poses. Each dataset contains 1780
images.

Table [II| summarizes the performance of different models.
Overall, with both DBH-YOLO and U-NetPlus, the GT and
Render models differ by less than 1.5% in performance
metrics, while the mixed synthetic model shows nearly a
15% improvement over the GT model. For DBH-YOLO,
the GT (REAL) and Render (NeeCo) models show similar
performance, indicating that networks trained on Render im-
ages can match those trained on GT images. Models trained
using standard augmentation methods (AUGMENT) show
performance improvements by rotating or translating the GT
images. This helps them handle certain new deformations in
the test dataset but are limited in introducing novel views and
unseen deformations, leading to only marginal improvements.
Although D-3DGS and 4DGS can synthesize new viewpoints,
their performance lags due to lower image quality. The mixed
synthetic model (NeeCo + Real Images) outperforms both,
as it benefits from unseen deformations and varied camera
viewpoints, enhancing training diversity and overall perfor-
mance, Additionally, the standard augmentation methods can
be applied to this model to further boost performance. The
conclusions for U-Net mirror those drawn from DBH-YOLO.
Similar conclusions can be drawn for YOLOv5 and U-Net.

D. Ablation Study

1) Dynamic Density Control and Uniform Motion Rendering:
In this section, we evaluate the impact of Dynamic Density
Control and Uniform Motion Rendering on the training pro-
cess. First, we compared the effects of dynamic density control
with other density control strategies on training. As illustrated
in Figure [§] during the initial training phase, both (a) and (b)
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TABLE |
QUANTITATIVE RESULT OF THE COMPARISON EXPERIMENT
Liver Stomach Bowel

Methods PSNRt SSIM1 LPIPS| PSNRT SSIM1 LPIPS]) PSNR1T SSIM1 LPIPS |
3DGS [13] 18.01 0.708 0.643 17.21 0.701 0.553 18.33 0.722 0.631
NeRFies [35] 23.12 0.772 0.493 22.17 0.763 0.441 21.71 0.714 0.512
4DGS [30] 25.23 0.847 0411 25.41 0.837 0.391 23.41 0.786 0.428
D-3DGS [16] 24.01 0.811 0.462 23.32 0.803 0.422 24.68 0.835 0.431
Unseen Deformation 27.52 0.881 0.353 27.01 0.855 0.301 27.81 0.868 0.337
NeeCo 28.88 0.902 0.273 29.81 0.893 0.274 29.87 0.913 0.281

Fig. 6. Reconstruction result with difference maps. From left to right are the GT image, the rendered image, and the difference map. The difference
map is created by overlaying the two images, with warm colors indicating areas of difference.

GT

3DGS NeRFies

4DGS D-3DGS Proposed

Fig. 7. Comparison of dynamic scene reconstruction using various methods. Each row represents the same training dataset, with the proposed
method consistently showing more detailed reconstruction results, especially in the main body and jaw parts of the surgical instruments.

increase point cloud density but fail to correct errors caused by
poor initialization, leading to the over-generation of Gaussian
representations for the instruments. In contrast, (c) effectively
manages density, preventing the spread of erroneous points and
ensuring accurate Gaussian representation of the instruments
(PSNR: (a) 15.76, (b) 14.21, (c) 17.33). Additionally, we visu-
alize the effects of different rendering strategies on training. As

shown in Figure 9] the absence of Dynamic Density Control
(c) leads to extremely poor rendering quality, while the lack of
Uniform Motion Rendering (d) results in inaccurate rendering
of the surgical instruments (PSNR: (b) 28.31, (c) 15.42, (d)
22.26). Without Dynamic Density Control, our model had
nearly an 80% chance of failing to complete the training in
our preliminary experimentation when tuning the SfM settings,
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TABLE Il

DATA SOURCE COMPARISON ACROSS DIFFERENT MODEL TYPES (MEAN AND STANDARD DEVIATION)

Model Metrics REAL AUGMENT [40] D-3DGS [16] 4DGS [30] NeeCo NeeCo + Real Images
YOLOVS [36] Precision 1 0.703 £ 0.007 0.731 £ 0.002 0.422 4+ 0.009 0476 + 0.007 0.694 + 0.013 0.776 + 0.011
Recall 1 0.831 £ 0.003 0.852 £ 0.008 0.535 £ 0.011  0.557 &£ 0.006  0.826 + 0.011 0.901 + 0.015
DBH-YOLO [38] Precision T 0.712 £ 0.007 0.731 £ 0.004 0.501 4+ 0.008  0.522 4+ 0.006  0.704 + 0.011 0.826 + 0.012
Recall 1 0.721 4+ 0.004 0.744 4+ 0.007 0.501 4+ 0.009  0.542 4+ 0.008  0.707 + 0.008 0.829 + 0.014
U-Net [37] IoU 1 0.617 £ 0.008 0.622 £ 0.003 0421 + 0.015 0.447 4+ 0.009  0.601 + 0.011 0.683 + 0.012
Dice 1 0.763 £+ 0.004 0.767 £ 0.009 0.592 + 0.012  0.617 &£ 0.008  0.751 &+ 0.009 0.812 + 0.013
U-NetPlus [39] ToU 1 0.633 £+ 0.006 0.652 £ 0.004 0.403 4+ 0.013  0.426 = 0.007  0.627 + 0.010 0.727 + 0.013
Dice 1 0.775 £+ 0.004 0.789 =+ 0.006 0.574 & 0.009 0.597 + 0.011  0.771 & 0.005 0.841 + 0.011
TABLE IlI
ABLATION STUDY RESULTS
Metric SH  Compensation ‘ Epochs

| 4k 8k 12k 20k

X X 1521 1637 19.02 20.63

v X 15.34 1677 20.64 2253

PSNRT X v 16.73  18.69 20.66 22.81

v v 16.82 18.88 21.54 23.78

Fig. 8. Ablation study on Dynamic Density Control, indicating differ-
ences in Gaussian quality at 6k training iterations, (a) Kerbl et al. [13],
(b) Zhang et al. [31] (c) Ours.

underscoring the importance of this method in our study.

2) Dynamic SH Update and Camera Pose Compensation:
We compared the impact of Dynamic SH function updates
and camera pose compensation on training. As shown in
Table [T} the model without any implementation yielded the
poorest rendering quality. The model with only SH updates
showed minial improvement in the early stages of training
(4k-8k epochs) but demonstrated noticeable gains in the later
stages (12k-20k epochs), as the early SH updates focused on
lower orders, allowing the model to better address erroneous
initializations. The model with Dynamic Camera Compensa-
tion exhibited consistent PSNR improvements throughout the
training process. The best results were achieved when both
methods were applied together.

Fig. 9. (a) GT image, (b) results with both Dynamic Density Control and
Uniform Motion Rendering applied, (c) without Dynamic Density Control,
(d) without Uniform Motion Rendering.

V. CONCLUSION

This paper presents a novel pipeline for generating surgical
instrument deformation images, which, compared to existing
methods, contributes to creating realistic and diverse surgical
image datasets. Our approach introduces dynamic 3D Gaussian
models to represent the deformation of instruments in dynamic
surgical scenes and employs a dynamic density control strategy
to address the challenges posed by poor camera poses in real-
world datasets, which often hinder training. Additionally, our
method can generate annotation files, addressing the significant
challenge of the lack of annotated data in medical imag-
ing datasets. Our experiments demonstrate promising results,
outperforming recent work and achieving object detection
and segmentation performances that closely resemble those
of models trained on GT imaging. Moreover, the datasets
generated using our method’s capability to render new de-
formations and viewpoints further surpass the performance of
models trained solely on GT imaging. However, our method
has limitations. It struggles to capture background tissue
deformations accurately, particularly when such deformations
follow a specific temporal or operational sequence. Our future
work will address the challenge of predicting soft tissue de-
formations from unordered input and improving the recovery
of these deformations.
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